Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines
نویسندگان
چکیده
In the last two decades switchgrass has received increasing attention as a promising bioenergy feedstock. Biomass is the principal trait for improvement in switchgrass breeding programs and tillering is an important component of biomass yield. Switchgrass inbred lines derived from a single parent showing vast variation in tiller number trait was used in this study. Axillary buds, which can develop into tillers, and node tissues, which give rise to axillary buds, were collected from high and low tillering inbred lines growing in field conditions. RNA from buds and nodes from the contrasting inbred lines were used for transcriptome profiling with switchgrass Affymetrix genechips. Nearly 7% of the probesets on the genechip exhibited significant differential expression in these lines. Real-time PCR analysis of 30 genes confirmed the differential expression patterns observed with genechips. Cluster analysis aided in identifying probesets unique to high or low tillering lines as well as those specific to buds or nodes of high tillering lines. Rice orthologs of the switchgrass genes were used for gene ontology (GO) analysis with AgriGO. Enrichment of genes associated with amino acid biosynthesis, lipid transport and vesicular transport were observed in low tillering lines. Enrichment of GOs for translation, RNA binding and gene expression in high tillering lines were indicative of active metabolism associated with rapid growth and development. Identification of different classes of transcription factor genes suggests that regulation of many genes determines the complex process of axillary bud initiation and development. Genes identified in this study will complement the current ongoing efforts in quantitative trait loci mapping of tillering in switchgrass.
منابع مشابه
De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.)
Tillering is an important trait in monocotyledon plants. The switchgrass (Panicum virgatum), studied usually as a source of biomass for energy production, can produce hundreds of tillers in its lifetime. Studying the tillering of switchgrass also provides information for other monocot crops. High-tillering and low-tillering mutants were produced by ethyl methanesulfonate mutagenesis. Alteration...
متن کاملTranscriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum1
Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorg...
متن کاملStudy of Genetic Diversity in Wheat Recombinant Inbred Lines by Factor Analysis
To identifying of the high yielding wheat lines with optimal characteristics and to determine the traits which could be used as the selection index for increasing of grain yield, 40 recombinant inbred lines derived from a cross between Norstar and Zagros cultivars were evaluated in a randomized complete block design with three replications. The measured characters consisted of peduncle weight, ...
متن کاملTranscriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum.
Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorg...
متن کاملGenetic Distance Based on SSR Markers and Testcross Performance of Maize Inbred Lines
The identification of parental inbred lines to develop superior hybrids is a rather costly and time-consuming step in maize breeding. In some cases, pedigree information has been used to select diverse parental lines. In the case of Iranian maize inbred lines, this information is not fully available. In this study we investigated the genetic distance (GD) based on Simple sequence Repeats (SSR) ...
متن کامل